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Abstract—L ow-loss high dielectric-constant materials are an-
alyzed in the terahertz frequency range using time-domain spec-
troscopy. The dielectric constant and loss tangent for steatite, alu-
mina, titania loaded polystyrene, and zirconium-tin—titanate are
presented and compared to measurements on high-resistivity sil-
icon. For these materials, the real part of the dielectric constant
rangesfrom 6 to 90. All of the sampleswere found to have reason-
able low-loss tangents. Applications as photonic crystal substrates
for terahertz frequency antenna are envisaged.

Index Terms—Antennas, dielectric materials, measurements,
submillimeter waves.

I. INTRODUCTION

OW-LOSS high dielectric-constant materials have many

applications in established and cutting-edge terahertz fre-
guency systems. Interest isnot limited to laboratory systems, but
includes aerospace, automotive, communications, defence, do-
mestic, medical, and marine applications. Furthermore, low-loss
dielectric materials are now of increasing importance in the de-
sign of circuit components and quasi-optical elements. Thereis
much work inthisarea, and rapid advances are being madein the
development of terahertz sources, detectors, mixers, and sim-
ilar components. However, the development of functional sys-
tems in this frequency range is dependent on the availability of
improved components, including attenuators, isolators, modu-
lators, switches, and directional couplers.

Recently, periodic electromagnetic or photonic bandgap
(PBG) crystals have provided new impetus to the research into
dielectric materials. The topic of PBG crystalsis currently one
of the most rapidly advancing sectors in electromagnetics, and
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it has been receiving a great deal of attention in the last ten
years. The interest is based on the ability of PBG crystals to
control the propagation of electromagnetic waves to an extent
that was not previously possible [1]. Following the theoretical
demonstration of their feasibility, it took a number of years
before a PBG crystal was physicaly realized.

Many of the technological problems associated with PBG
crystals are practical, and usually relate to the method of man-
ufacture. To this end, some ingenious ways of producing such
crystals have recently been developed [2], [3]. One key element
inthe successful operation of these crystalsisthe dielectric con-
trast between the constituent materials, and there is a require-
ment for high-dielectric low-loss dielectric materialsin the ter-
ahertz-frequency range.

Interestin diel ectrics has usually been focused on thereal part
of the dielectric constant, and on the loss tangent. The problem
that is often encountered at the early design phase of integrated
or quasi-optical components is the serious shortage of data at
terahertz frequencies, as most material characterization is rou-
tinely performed only in the megahertz frequency range. Fur-
thermore, there can be significant variationsin the measured re-
sults, arising from the measurement technique, supplier, or com-
position of the material (annealing, sintering, impurities, etc.). If
dataisavailable, it isvery often only at spot frequencies, while
for technical reasons, continuous coverage is attractive. In the
microwave region, the dielectric characteristics are most often
dominated by slowly varying dielectric relaxation. This means
that many materials need only be characterized at afew frequen-
cies, but at terahertz frequencies, this does not necessarily hold.

Il. MEASUREMENT METHOD AND SETUP

For broad-band continuous analysis of high dielectric mate-
rials, atime-domain terahertz spectroscopy method was chosen
[4]-6]. In contrast to narrow-band conventiona heterodyne
methods, this technique enables extremely broad-band char-
acterization from 50 GHz up to 43 THz [7]{9]. Additionally,
in contrast to incoherent measurement techniques (e.g., bolo-
metric detection), which detect only the intensity of terahertz
radiation, the time-domain approach is intrinsically coherent
and, therefore, permits the detection of the amplitude and phase
of aterahertz signal. This automatically suppresses the influ-
ence of any incoherent noise background, greatly enhancing the
detection sensitivity. It also alows the measurement of com-
plex material properties, like the complex dielectric constant,
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(left) Schematic diagram of an experimental system for time-resolved terahertz spectroscopy. (right) Typical terahertz electric field transient and

corresponding Fourier spectrum of the employed surface field emitter/photoconductive detector combination.

without requiring the potentially problematic Kramers—Kronig
analysis.

Thegeneral concept of time-domain terahertz spectroscopy is
to make use of ultrashort laser pulsesto generate and detect tera-
hertz radiation. Fig. 1 isaschematic diagram of an experimental
test system for time-domain coherent terahertz spectroscopy. An
ultrashort laser pulse, with duration of typically 10-100 fs, ex-
cites a terahertz emitter. The radiated pulse is focused on the
sample by a pair of paraboloidal mirrorsin order to avoid any
dispersionintroduced by using lenses. The transmitted terahertz
dectricfieldisthen guided with asecond pair of paraboloidsand
focused onto a detector. This monitors the electric field at the
timeit is gated by a second time-delayed laser pulse. The cor-
relation of excitation and detection pulses allows the terahertz
electric-field amplitude to be monitored in the time domain.

Thetime-domain terahertz spectroscopy system used isbased
on 100-fs optical pulses from acommercial Ti:Al,O3 laser op-
erating at a repetition rate of 76 MHz to generate broad-band
terahertz pulses by photoexciting charge carriers within the sur-
facefield of an epitaxial InGaAsfilm (for details see [10]). The
transmitted terahertz electric field is detected by a photocon-
ductive antenna made from low-temperature grown gallium ar-
senide [11], with a silicon lens attached for enhanced collec-
tion efficiency. The entire system is flushed with dry nitrogen to
remove the influence of water absorption. A usable bandwidth
between approximately 300 GHz to over 5 THz is obtained, as
shown in Fig. 1. The focus size in this setup is 870 um (full
width at half maximum (FWHM) of field amplitude), although
lower regions of the spectrum exhibit a diffraction limited focus
that is larger.

For the material analysis, reference transient measurements
are taken without the sample inserted in the measurement
system in order to be able to correct for the spectral depen-

dencies of the system. Transient measurements are then taken,
with the sample placed in the terahertz beam path under normal
incidence. A series of ten sample and reference measurements
is taken to reduce and to quantify experimental errors. The
ratio of the complex Fourier transforms of sample E(») and
reference E..¢(1) signals provides the complex transmissivity
(), which is adirect measure of the complex refractive index
n(v) = n(r) — ik(r) of the analyzed sample at the respective
frequency v. Fresnel equations including Fabry—Perot effects
yield [12]

for aslab of material of thickness d. Hence, as the experiments
deliver both the real and imaginary components of #(1/), both
the real and imaginary components of 7(v) (or other quantities
like ey (v) and £2 (1) or tan(d) can directly be determined. Ap-
propriate numerical approaches are described in [13] and [14].
The only source of systematic error in this and, more generaly,
in any type of terahertz transmission experiments to evaluate
dielectric properties, is the difficulty of precisely accounting
for scattering effects. As aresult of this, a fraction of the ter-
ahertz pulses might scatter out of the detection path and, there-
fore, indicate a larger loss tangent than the true value. Never-
theless, scattering is expected to be small in these experiments,
given the large aperture of the detection system (30°) and the
homogeneity of the samples on the spatial scale of the applied
wavelengths (50 ;m—3 mm). Experiments with varying detec-
tion apertures confirm this conjecture.
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Fig. 2. Average and standard deviation of the real part of the dielectric
constant, and loss tangent for the steatite sample.
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Fig. 3. Average and standard deviation of the real part of the dielectric
constant, and loss tangent for the alumina sample.

1. EXPERIMENTAL RESULTS

Several materials were selected, which seem promising for
manufacturing terahertz components, given their low cost,
simple processing, reproducible parameters, and ready avail-
ability. Thefollowing four materials, besides silicon, have been
measured with dielectric constants ranging from 6 to 90:

1) steatite (real part of epsilon = 6.5);

2) alumina (Al>Os3, real part of epsilon ~ 9.7);

3) titanialoaded polystyrene (rea part of epsilon ~ 16);

4) two versions of zirconium-tin-titanate (Zr SnTiOs, real

part of epsilon =~ 36 and 90).
Of these materials, aluminais the most common. All dielectric
ceramics are nontoxic and nonhazardous and no special han-
dling or storage precautions are required. The higher dielec-
tric-constant materials are dlightly granular.

The measured dielectric constants and loss tangents of the
samples are shown in Figs. 2-6. Figs. 2-5 show the average and
standard deviation for the dielectric constant and loss tangent
determined from ten consecutive measurements on individual
samples. The error bars constitute, therefore, an indication
for al statistical errors of the measurement approach. Fig. 6
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Fig. 4. Average and standard deviation of the real part of the dielectric
constant, and loss tangent for the titaniain polystyrene matrix sample.
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Fig. 5. Average and standard deviation of the real part of the dielectric
constant, and loss tangent for the zirconium-tin—titanate | sample (e,. ~ 37).
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Fig. 6. Average and standard deviation of the real part of the dielectric
constant, and loss tangent for a set of three zirconium-tin—titanate |1 samples
e, & 90).

shows the average and standard deviation from three nominally
identical samples, in order to quantify parameter variationsin a
set of samples. The reproducibility of the results was confirmed
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Fig. 7. Average and standard deviation of the real part of the dielectric
constant, and loss tangent for the high-resistivity silicon sample.

by repeating the measurements at different sample locations.
All samples exhibited a very high homogeneity. Fig. 7 shows
measurements performed on high-resistivity crystalline silicon
(epsilon =~ 11.6), which, despite of a higher cost, is known
to be an excellent dielectric material at terahertz frequencies
[15]-{17]. Theexperimentson silicon were performed inacolli-
mated beam configuration in order to enhance the measurement
accuracy and enable the measurement of the extremely low
losses of this material.

The presented spectrahavevarying spectral rangesfor thedif-
ferent samples, as only spectral information with an adequate
signal-to-noise ratio of greater than 20 dB was taken for eval-
uating material parameters. Due to the available sample thick-
ness, only a restricted region of the 5-THz system bandwidth
was, therefore, utilizable. The measurement accuracy varies ac-
cordingly with sample thickness and spectral position. For ex-
ample, the zirconium-tintitanate samples presented in Fig. 6
have a standard deviation of 0.13 %, (6 %) for the real part
(or tan 6) of the dielectric constant observed at the central spec-
tral range, which degrades down to 2 %, (43 %.) at the spec-
tral edges of the measurement bandwidth. The data quality of
thisthree-sample average indicates not only the adequacy of the
experimental approach, but also excellent sample homogeneity.
Most samples show a nearly linear positive dependence on fre-
quency of boththereal part of thedielectric constant and losspa-
rameters, eventually indicating the presence of higher frequency
resonances, or the onset of Rayleigh scattering. Thisincreasing
losses at higher frequencies are particularly noteworthy in com-
parison to the high-resistivity crystalline silicon data shown in
Fig. 7, which excels with respect to losses, especialy at higher
frequencies. One should note that the silicon loss values mea
sured here (o« = 0,05 cm~1, increasing toward lower energies
upto « = 0,3 cm~!) agree with the ones given in [15], but are
significantly higher than the low-frequency values reported in
[16]. One should also take noti ce that the oscillatory modulation
on the data derived for the alumina sample depicted in Fig. 3is
an experimental artefact due to the thin sample thickness, which
prevents a precise separation of different Fabry—Perot reflection
orders. The oscillations are, however, on the order of the stan-
dard deviation of the measurements.
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IV. CONCLUSIONS

An analysis of low-cost high-dielectric constant materials
has been presented. All materialsthat were tested exhibited low
losses, with loss-tangent values (tan 6) typically in the order of
0.02 with atendency toward higher losses up to 0.06 at higher
frequencies. Alumina stands out in comparison to the other
low-cost dielectric materials with respect to losses, exhibiting
a continuously low-loss tangent <0.02 up to 3 THz, followed
closely by the zirconium-tin—titanate sample with a dielectric
constant of 37. The presented materials offer a wide range of
real parts of the dielectric constants (£) on the order of 6.5, 9.3,
16, 37, and 93 for the respective materials and, therefore, can
provide solutions to numerous engineering requirements. All
materials are low cost and processable in order to enable the
development of cost effective photonic crystal components in
the terahertz spectral range.
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