
1062 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 4, APRIL 2003

Measurement of the Dielectric Constant and Loss
Tangent of High Dielectric-Constant Materials

at Terahertz Frequencies
Peter Haring Bolivar, Martin Brucherseifer, Jaime Gómez Rivas, Ramón Gonzalo, Member, IEEE, Iñigo Ederra,

Andrew L. Reynolds, M. Holker, and Peter de Maagt, Senior Member, IEEE

Abstract—Low-loss high dielectric-constant materials are an-
alyzed in the terahertz frequency range using time-domain spec-
troscopy. The dielectric constant and loss tangent for steatite, alu-
mina, titania loaded polystyrene, and zirconium–tin–titanate are
presented and compared to measurements on high-resistivity sil-
icon. For these materials, the real part of the dielectric constant
ranges from 6 to 90. All of the samples were found to have reason-
able low-loss tangents. Applications as photonic crystal substrates
for terahertz frequency antenna are envisaged.

Index Terms—Antennas, dielectric materials, measurements,
submillimeter waves.

I. INTRODUCTION

LOW-LOSS high dielectric-constant materials have many
applications in established and cutting-edge terahertz fre-

quency systems. Interest is not limited to laboratory systems, but
includes aerospace, automotive, communications, defence, do-
mestic, medical, and marine applications. Furthermore, low-loss
dielectric materials are now of increasing importance in the de-
sign of circuit components and quasi-optical elements. There is
much work in this area, and rapid advances are being made in the
development of terahertz sources, detectors, mixers, and sim-
ilar components. However, the development of functional sys-
tems in this frequency range is dependent on the availability of
improved components, including attenuators, isolators, modu-
lators, switches, and directional couplers.

Recently, periodic electromagnetic or photonic bandgap
(PBG) crystals have provided new impetus to the research into
dielectric materials. The topic of PBG crystals is currently one
of the most rapidly advancing sectors in electromagnetics, and
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it has been receiving a great deal of attention in the last ten
years. The interest is based on the ability of PBG crystals to
control the propagation of electromagnetic waves to an extent
that was not previously possible [1]. Following the theoretical
demonstration of their feasibility, it took a number of years
before a PBG crystal was physically realized.

Many of the technological problems associated with PBG
crystals are practical, and usually relate to the method of man-
ufacture. To this end, some ingenious ways of producing such
crystals have recently been developed [2], [3]. One key element
in the successful operation of these crystals is the dielectric con-
trast between the constituent materials, and there is a require-
ment for high-dielectric low-loss dielectric materials in the ter-
ahertz-frequency range.

Interest in dielectrics has usually been focused on the real part
of the dielectric constant, and on the loss tangent. The problem
that is often encountered at the early design phase of integrated
or quasi-optical components is the serious shortage of data at
terahertz frequencies, as most material characterization is rou-
tinely performed only in the megahertz frequency range. Fur-
thermore, there can be significant variations in the measured re-
sults, arising from the measurement technique, supplier, or com-
position of the material (annealing, sintering, impurities, etc.). If
data is available, it is very often only at spot frequencies, while
for technical reasons, continuous coverage is attractive. In the
microwave region, the dielectric characteristics are most often
dominated by slowly varying dielectric relaxation. This means
that many materials need only be characterized at a few frequen-
cies, but at terahertz frequencies, this does not necessarily hold.

II. MEASUREMENT METHOD AND SETUP

For broad-band continuous analysis of high dielectric mate-
rials, a time-domain terahertz spectroscopy method was chosen
[4]–[6]. In contrast to narrow-band conventional heterodyne
methods, this technique enables extremely broad-band char-
acterization from 50 GHz up to 43 THz [7]–[9]. Additionally,
in contrast to incoherent measurement techniques (e.g., bolo-
metric detection), which detect only the intensity of terahertz
radiation, the time-domain approach is intrinsically coherent
and, therefore, permits the detection of the amplitude and phase
of a terahertz signal. This automatically suppresses the influ-
ence of any incoherent noise background, greatly enhancing the
detection sensitivity. It also allows the measurement of com-
plex material properties, like the complex dielectric constant,
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Fig. 1. (left) Schematic diagram of an experimental system for time-resolved terahertz spectroscopy. (right) Typical terahertz electric field transient and
corresponding Fourier spectrum of the employed surface field emitter/photoconductive detector combination.

without requiring the potentially problematic Kramers–Kronig
analysis.

The general concept of time-domain terahertz spectroscopy is
to make use of ultrashort laser pulses to generate and detect tera-
hertz radiation. Fig. 1 is a schematic diagram of an experimental
test system for time-domain coherent terahertz spectroscopy. An
ultrashort laser pulse, with duration of typically 10–100 fs, ex-
cites a terahertz emitter. The radiated pulse is focused on the
sample by a pair of paraboloidal mirrors in order to avoid any
dispersion introduced by using lenses. The transmitted terahertz
electric field is then guided with a second pair of paraboloids and
focused onto a detector. This monitors the electric field at the
time it is gated by a second time-delayed laser pulse. The cor-
relation of excitation and detection pulses allows the terahertz
electric-field amplitude to be monitored in the time domain.

The time-domain terahertz spectroscopy system used is based
on 100-fs optical pulses from a commercial Ti:Al O laser op-
erating at a repetition rate of 76 MHz to generate broad-band
terahertz pulses by photoexciting charge carriers within the sur-
face field of an epitaxial InGaAs film (for details see [10]). The
transmitted terahertz electric field is detected by a photocon-
ductive antenna made from low-temperature grown gallium ar-
senide [11], with a silicon lens attached for enhanced collec-
tion efficiency. The entire system is flushed with dry nitrogen to
remove the influence of water absorption. A usable bandwidth
between approximately 300 GHz to over 5 THz is obtained, as
shown in Fig. 1. The focus size in this setup is 870 m (full
width at half maximum (FWHM) of field amplitude), although
lower regions of the spectrum exhibit a diffraction limited focus
that is larger.

For the material analysis, reference transient measurements
are taken without the sample inserted in the measurement
system in order to be able to correct for the spectral depen-

dencies of the system. Transient measurements are then taken,
with the sample placed in the terahertz beam path under normal
incidence. A series of ten sample and reference measurements
is taken to reduce and to quantify experimental errors. The
ratio of the complex Fourier transforms of sample and
reference signals provides the complex transmissivity

, which is a direct measure of the complex refractive index
of the analyzed sample at the respective

frequency . Fresnel equations including Fabry–Perot effects
yield [12]

(1)

for a slab of material of thickness . Hence, as the experiments
deliver both the real and imaginary components of , both
the real and imaginary components of (or other quantities
like and or can directly be determined. Ap-
propriate numerical approaches are described in [13] and [14].
The only source of systematic error in this and, more generally,
in any type of terahertz transmission experiments to evaluate
dielectric properties, is the difficulty of precisely accounting
for scattering effects. As a result of this, a fraction of the ter-
ahertz pulses might scatter out of the detection path and, there-
fore, indicate a larger loss tangent than the true value. Never-
theless, scattering is expected to be small in these experiments,
given the large aperture of the detection system (30 ) and the
homogeneity of the samples on the spatial scale of the applied
wavelengths (50 m–3 mm). Experiments with varying detec-
tion apertures confirm this conjecture.
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Fig. 2. Average and standard deviation of the real part of the dielectric
constant, and loss tangent for the steatite sample.

Fig. 3. Average and standard deviation of the real part of the dielectric
constant, and loss tangent for the alumina sample.

III. EXPERIMENTAL RESULTS

Several materials were selected, which seem promising for
manufacturing terahertz components, given their low cost,
simple processing, reproducible parameters, and ready avail-
ability. The following four materials, besides silicon, have been
measured with dielectric constants ranging from 6 to 90:

1) steatite (real part of epsilon );
2) alumina (Al , real part of epsilon );
3) titania loaded polystyrene (real part of epsilon );
4) two versions of zirconium–tin–titanate (Zr SnTiO , real

part of epsilon and 90).
Of these materials, alumina is the most common. All dielectric
ceramics are nontoxic and nonhazardous and no special han-
dling or storage precautions are required. The higher dielec-
tric-constant materials are slightly granular.

The measured dielectric constants and loss tangents of the
samples are shown in Figs. 2–6. Figs. 2–5 show the average and
standard deviation for the dielectric constant and loss tangent
determined from ten consecutive measurements on individual
samples. The error bars constitute, therefore, an indication
for all statistical errors of the measurement approach. Fig. 6

Fig. 4. Average and standard deviation of the real part of the dielectric
constant, and loss tangent for the titania in polystyrene matrix sample.

Fig. 5. Average and standard deviation of the real part of the dielectric
constant, and loss tangent for the zirconium–tin–titanate I sample (" � 37).

Fig. 6. Average and standard deviation of the real part of the dielectric
constant, and loss tangent for a set of three zirconium–tin–titanate II samples
(" � 90).

shows the average and standard deviation from three nominally
identical samples, in order to quantify parameter variations in a
set of samples. The reproducibility of the results was confirmed
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Fig. 7. Average and standard deviation of the real part of the dielectric
constant, and loss tangent for the high-resistivity silicon sample.

by repeating the measurements at different sample locations.
All samples exhibited a very high homogeneity. Fig. 7 shows
measurements performed on high-resistivity crystalline silicon
(epsilon ), which, despite of a higher cost, is known
to be an excellent dielectric material at terahertz frequencies
[15]–[17]. The experiments on silicon were performed in a colli-
mated beam configuration in order to enhance the measurement
accuracy and enable the measurement of the extremely low
losses of this material.

The presented spectra have varying spectral ranges for the dif-
ferent samples, as only spectral information with an adequate
signal-to-noise ratio of greater than 20 dB was taken for eval-
uating material parameters. Due to the available sample thick-
ness, only a restricted region of the 5-THz system bandwidth
was, therefore, utilizable. The measurement accuracy varies ac-
cordingly with sample thickness and spectral position. For ex-
ample, the zirconium–tin–titanate samples presented in Fig. 6
have a standard deviation of 0.13 (6 ) for the real part
(or ) of the dielectric constant observed at the central spec-
tral range, which degrades down to 2 (43 ) at the spec-
tral edges of the measurement bandwidth. The data quality of
this three-sample average indicates not only the adequacy of the
experimental approach, but also excellent sample homogeneity.
Most samples show a nearly linear positive dependence on fre-
quency of both the real part of the dielectric constant and loss pa-
rameters, eventually indicating the presence of higher frequency
resonances, or the onset of Rayleigh scattering. This increasing
losses at higher frequencies are particularly noteworthy in com-
parison to the high-resistivity crystalline silicon data shown in
Fig. 7, which excels with respect to losses, especially at higher
frequencies. One should note that the silicon loss values mea-
sured here ( cm , increasing toward lower energies
up to cm ) agree with the ones given in [15], but are
significantly higher than the low-frequency values reported in
[16]. One should also take notice that the oscillatory modulation
on the data derived for the alumina sample depicted in Fig. 3 is
an experimental artefact due to the thin sample thickness, which
prevents a precise separation of different Fabry–Perot reflection
orders. The oscillations are, however, on the order of the stan-
dard deviation of the measurements.

IV. CONCLUSIONS

An analysis of low-cost high-dielectric constant materials
has been presented. All materials that were tested exhibited low
losses, with loss-tangent values typically in the order of
0.02 with a tendency toward higher losses up to 0.06 at higher
frequencies. Alumina stands out in comparison to the other
low-cost dielectric materials with respect to losses, exhibiting
a continuously low-loss tangent 0.02 up to 3 THz, followed
closely by the zirconium–tin–titanate sample with a dielectric
constant of 37. The presented materials offer a wide range of
real parts of the dielectric constants on the order of 6.5, 9.3,
16, 37, and 93 for the respective materials and, therefore, can
provide solutions to numerous engineering requirements. All
materials are low cost and processable in order to enable the
development of cost effective photonic crystal components in
the terahertz spectral range.
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